

GridLAB-D

2010 Peer Review

Overview

- What is GridLAB-D?
- Why use GridLAB-D?
- How does GridLAB-D work?
- How has GridLAB-D been used so far?
- What is it expected in the coming year?
- Funding and management details

GridLAB-D Simulates the Smart Grid

- Market models Next generation tool
- √ Integrates models
- √ Smart Grid analysis
 - Project
 - Technologies
 - Cost/benefits
 - Business cases
- ✓ Multi-scale models
- ✓ Seconds to decades
- Links to existing tools
- Open source
- Contributions from
 - Governmentas
- West A S37.32 S39.06 Inclustry
 - Academic. J Conglished K
 - Vendors
- ✓ Drives need for high performance computers
- ✓ Vendors can add/extract modules for their own uses

GridPAReD systeth unities keys elements motes mart Grid

Why simulate the smart grid?

- ✓ Evaluate the potential of new technologies & operational strategies to save capital costs, improve reliability, & provide benefits like ancillary services
- ✓ Craft and refine the characteristics of technologies and operational strategies to provide maximum benefit at the lowest cost
- ✓ Understand and quantify the synergies among smart grid technologies
- ✓ Avoid unintended consequences from utilizing distributed control strategies
- ✓ Predict, evaluate, & extrapolate deployment project results

How does GridLAB-D work?

- Simultaneous solution of loads and load flow
 - quasi-steady state, ~1-sec to 1-hr time steps
 - prototypical example: conservation voltage reduction
- Time-series simulation of distribution systems operations and expansion
 - off-line, not operations
 - technology planning & evaluation, not distribution engineering
 - but ... open-source modules can be used in commercial products
- Detailed, simultaneous simulation of power flow, end use loads, and market functions and interactions (including weather and regulatory)
- Time scales from seconds to decades (time steps variable, user defined)
- Software consists of a system core, which loads and synchronizes
 'plug-in' modules, which deliver modeling functionality
 - modules are independently produced, compiled, and distributed
 - core manages input, time steps, variable sharing, convergence, and output

How has GridLAB-D Been Used?

Goal: Analyze the benefits of GE's
Coordinated/Integrated Volt-VAR
control as deployed on the AEP
distribution system

- Calibrated simulation of expected benefits
- Evaluate field data for GE technology
- Compare expected & actual results
- Explain nature of savings effects
- Extrapolate benefits to AEP footprint

Client: American Electric Power (AEP)

Team: Kevin Schneider (PI), Jason Fuller, Frank Tuffner, Yousu Chen, and Ruchi Singh

Goal: Build the full-value business case for scalable demand response (DR) networks

- Simulate traditional DR programs & PNNL's
 RTP/transactive control
- Evaluate benefits for generation, transmission, & <u>distribution</u> avoided costs, wholesale & carbon benefits
- Compare DR with & without efficiency

Client: CRN (NRECA), CoServ/Brazos Coops, TVA/Caney Fork Coop

Team: Rob Pratt (PI), Jason Fuller, Kevin Schneider, Tom Secrest, David Chassin

Key Findings and Strategic Importance

Traditional CPP Program – "rebound" sets new peak!

Staggered CPP Pricing

Reduces Peak Distribution Capacity Requirement by 11.5%

K. Schneider, National CVR Benefit Analysis Report, PNNL Report 19596, 2010.

Strong seasonal variations in the effectiveness of volt-VAR control (VVC) were identified

Examination of multiple substations showed VVC is well suited to some (not all) feeder types

Detailed modeling shows energy savings were primarily in <u>load</u> reduction, not <u>loss</u> reduction Impossible to study problem without **combined** powerflow and voltage responsive load.

How is GridLAB-D Being Used

- Commercial projects
 - Major international business IT vendor creating a user interface to commercialize tools based on GridLAB-D
 - GE CRADA to study smart appliance control strategies
 - PNM modeling of Albuquerque/Mesa del Sol (UNM)
 - AEP Smart Grid demo
- Academic
 - Renewable integration (UVic/BC Hydro)
 - Distribution analysis course taught at University of Washington
 - Invited lectures: MIT/Harvard/BU, UNM, UNCC, UVic, DTU
- Others (4000+ downloads in 2010)
- ARRA Projects
 - 4 separate analysis efforts of SGIG projects

SGIG Analysis Methodology

- ~100 SGIG project → representative sample will be analyzed
- Select technologies that dominate impact of Smart Grid
- Apply to the 24 Modern Grid prototypical feeders.
- Extrapolate SGIG impacts to estimate national potential
- The selected technologies are:
 - Conservation Voltage Reduction
 - Demand Response
 - Energy Storage/PHEVs
 - Distribution Automation
 - Renewables Integration

GridLAB-D Commercialization

- Open source distribution using SourceForge
 - Access to source code by all
 - Updates monitored/controlled by PNNL staff
 - Extensive online documentation and course materials
 - Examples and reference models
 - Q&A forums, issue tracking, analytics
- Open source licensing
 - Vendors can add/replace components freely
 - Extract components for commercial use
 - No restrictions on use/application
 - Sell add-on modules but keep them proprietary

GridLAB-D History

- FY07 Prototyping (\$587k)
 - Technology demonstration
 - Requirements development
- FY08 Development (\$750k)
 - Core implementation
 - Prototype module implementations
- FY09 Validation (\$700k)
 - Main module implementations
 - Model validation
- FY10 Preliminary analysis (\$1M)
 - Rate designs
 - Conservation voltage reduction
 - Model extensions for expected future studies

GridLAB-D FY 11 Plan

- Budget is \$1.3M
- Two main activities at PNNL
 - Analysis of SGIG projects
 - 4 separate technology portfolios
 - Report on impacts assessment due Sept 2011
 - Technical support
 - Outreach (classes, papers, conferences)
 - Technical support for other projects
 - Module enhancements for SGIG
 - Build/release activities (version 2.2)

Questions

Contact david.chassin@pnl.gov

Online at http://www.gridlabd.org/

GridLAB-D Capabilities

- Data processing
 - Input (weather, prices, consumer behaviors)
 - Output (recordings, histograms, aggregates)
- Powerflow
 - All common distribution components
 - Most common transmission components
- Load models
 - Residential (w/appliances)
 - Commercial (small office)
 - Appliances (FY11 MtTech)

- Controls
 - Transactive control (FY11 PNNL)
- Markets/pricing
 - Retail (multiple rates)
 - Wholesale (FY11 ISU)
- Reliability
 - IEEE 1366 metrics
- Communications
 - Behavior (FY11 PNNL)
- GUI API
 - Web-based (FY11 Battelle)
- High-performance computing
 - Core (FY11 UNM)
 - Modules (FY11 Battelle)

Select Papers and Conferences

- GridLAB-D: An open-source power systems modeling and simulation environment
 Chassin, D.P.; Schneider, K.; Gerkensmeyer, C.; Transmission and Distribution Conference and
 Exposition, 2008. T&D. IEEE/PES Digital Object Identifier: 10.1109/TDC.2008.4517260
 Publication Year: 2008, Page(s): 1 5
- Accelerating the Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable
 Computer Jong-Ho Byun; Ravindran, A.; Mukherjee, A.; Joshi, B.; Chassin, D.; Field
 Programmable Custom Computing Machines, 2009. FCCM '09. 17th IEEE Symposium on Digital
 Object Identifier: 10.1109/FCCM.2009.23 Publication Year: 2009, Page(s): 227 230
- Simulating demand participation in market operations
 Chassin, D.P.; Widergren, S.E.; Power & Energy Society General Meeting, 2009. PES '09. IEEE
 Digital Object Identifier: 10.1109/PES.2009.5275369 Publication Year: 2009, Page(s): 1 5
- Distribution power flow for smart grid technologies
 Schneider, K.P.; Chassin, D.; Chen, Y.; Fuller, J.C.; Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES Digital Object Identifier: 10.1109/PSCE.2009.4840078 Publication Year: 2009, Page(s): 1 7
- Integrated retail and wholesale power system operation with smart-grid functionality Aliprantis, Dionysios; Penick, Scott; Tesfatsion, Leigh; Huan Zhao; Power and Energy Society General Meeting, 2010 IEEE Digital Object Identifier: 10.1109/PES.2010.5589594 Publication Year: 2010, Page(s): 1 8